
Lab #1 Assignment: Total-Energy Calculations with Quantum-Espresso

For our sample problem, we will be determining the zero-temperature, zero-pressure equilibrium lattice 
parameter of silicon by doing a series of DFT total-energy calculations.  First, we will determine proper 
values for the plane-wave energy cutoff and for the density of the Monkhorst-Pack k-point grid by 
examining convergence of interatomic forces.  Then we will calculate the energy as a function of 
varying lattice parameter and fit the results to a known equation-of-state curve.

The diamond-structure unit cell of silicon is shown below for your reference.

For each of these calculations, you may use the sample input file Si.sample.in as a starting template for 
your calculations.  Although you may edit this file manually for each calculation you perform, you may 
find it easier to use scripts to automate the process.  If you choose to use scripts instead, a sample script 
Si.sample.sh is provided as a template.

Part I: Understanding convergence with respect to plane-wave energy cutoff

1) Copy the template input file Si.sample.in and edit it.
2) Set your k-point mesh to a value which is large enough to ensure any error because of poor 

sampling will be small.  A value of 6 x 6 x 6 should be sufficient for this part of the problem. 
To begin with, set the lattice constant celldm(1) to the room-temperature experimental value for 
silicon (look on http://www.webelements.com).

3) Systematically vary your plane-wave energy cutoff ecutwfc and calculate the energy of the 
system for each value of ecutwfc.  Try values between 5 and 35 Ry, sampling at intervals of 5 
Ry.  



4) Save your results from (2).  Now revise your script to calculate the energy of the system as a 
function of ecutwfc for a unit cell of silicon which is compressed by 5% in each cubic direction. 
(Note that there is no need to revise the positions of the atoms in the script, since these are given 
in units of the lattice constant and will scale automatically when you change celldm(1)).

5) For each value of ecutwfc, calculate the energy difference E between the structure of (1) and 
that of (2).  Collect your results and plot E as a function of the plane-wave energy cutoff 
ecutwfc.  Is the convergence trend monotonic?

6) Assume that using 35 Ry gives a good approximation for the fully converged value of E. What 
is the lowest energy cutoff that gives a value for E that is within 1% of the value for a 35 Ry 
cutoff?  This is the value you should choose for all subsequent calculations.

Part II: Understanding convergence with respect to k-point mesh density

1) Now repeat the basic procedure from Part I, except this time systematically vary the 
Monkhorst-Pack k-point mesh density instead of the plane-wave energy cutoff.  Try automatic 
k-point meshes of 1 x 1 x 1, 2 x 2 x 2, 3 x 3 x 3, ... , up to 6 x 6 x 6.  Keep the offset at 1,1,1. 
(Note that since silicon is a cubic cell, k-point sampling should always be even in each of the 
three Cartesian directions.)  Be sure to use the plane-wave energy cutoff you found in Part I.  As 
before, perform one complete set of calculations for silicon at the experimental lattice parameter 
and a second one for the system under compression. 

2) For each k-point mesh density, calculate the energy difference E between the larger structure 
and the compressed structure.  Collect your results and plot E as a function of the linear k-
point mesh density.  Is the convergence trend monotonic?

3) Assume that an 6 x 6 x 6 k-point mesh gives a good approximation for the force at full 
convergence.  What is the smallest k-point mesh that gives a value for E that is within 1% of 
the value you obtained using the 6 x 6 x 6 mesh?  This is the mesh you should choose for all 
subsequent calculations.

Part III: Obtaining the equilibrium lattice constant

1) Now insert the values for the plane-wave energy cutoff and the Monkhorst-Pack k-point mesh 
density that you obtained in Parts I & II.  Calculate the total energy of your system as a function 
of the lattice parameter.  Test values for the lattice parameter in the range 9.8 to10.8 Bohr, 
sampling at intervals of 0.2 Bohr.

2) Plot the energy as a function of the lattice parameter.
3) Use the ev.x utility provided with Quantum-Espresso to fit the energy-versus-lattice constant 

data to a Birch-Murnaghan equation of state.  Note that the input to this utility should be a file 
with two columns: the lattice parameter in units of Bohr and the energy in units of Rydbergs. 
Look at the output to ev.x and record the resulting lattice constant and the energy of the system 
at equilibrium.

Part IV: The consequences of poor convergence

1) Repeat the procedure you used in Part III, except this time use a plane-wave energy cutoff of 
only 5 Rydbergs.  Plot the resulting energy as a function of the lattice parameter, and record the 
values of the lattice constant and the energy of the system at equilibrium.

2) Repeat the procedure once again, returning the plane-wave energy cutoff to its proper value but 
decreasing the k-point mesh to 1 x 1 x 1.  Plot the resulting energy as a function of the lattice 



parameter, and record the values of the lattice constant and the energy of the system at 
equilibrium.

3) How does poor convergence affect the results?  Pay particular attention to the shape and 
position of the energy-versus-lattice-constant curve.

4) Suppose we were to double the size of the silicon unit cell that we used in each dimension, 
resulting in a new unit cell with 8 times the volume of the original.  Based on your findings of 
Parts I & II, what plane-wave energy cutoff and k-point mesh density should you use for your 
new cell?  Justify your answer.


